Epigenetic Age Advancement Is Associated With Cognition, Frailty, and Mortality in Older PWH

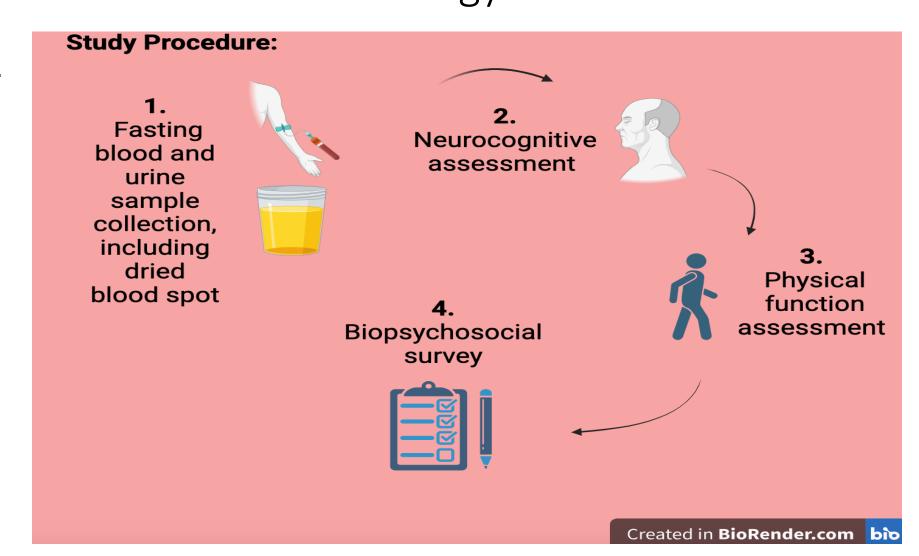
Carrie Johnston, MD, MS¹, Alina Pang, PhD¹, Eugenia Siegler, MD², Chelsie O Burchett MA², Charlene Thomas MS³, Mia Crowley MPH¹, Rochelle O'Brien BS¹, Lishomwa Ndhlovu MD, PhD¹, Marshall J. Glesby, MD, PhD¹, Michael J. Corley, PhD¹

¹Weill Cornell Medicine, Division of Infectious Diseases New York, NY, USA
²Weill Cornell Medicine, Division of Geriatrics and Palliative Care, NY, USA
³ Weill Cornell Medicine, CTSC Biostatistics Core New York, NY, USA

BACKGROUND

People with HIV (PWH) are more likely to experience medical comorbidities and geriatric syndromes including frailty as they m

- Epigenetic changes to DNA by different patterns of methylation have been associated with aging
- People with HIV have been demonstrated to have advancement of epigenetic-based age calculation compared to chronologic age¹
- Early and/or untreated HIV advances epigenetic age, and ART attenuates age advancement²


We investigated associations between phenotypic measures of cognition, frailty, and 7-year survival with epigenetic age estimates derived from the modification of DNA methylation (DNAm).

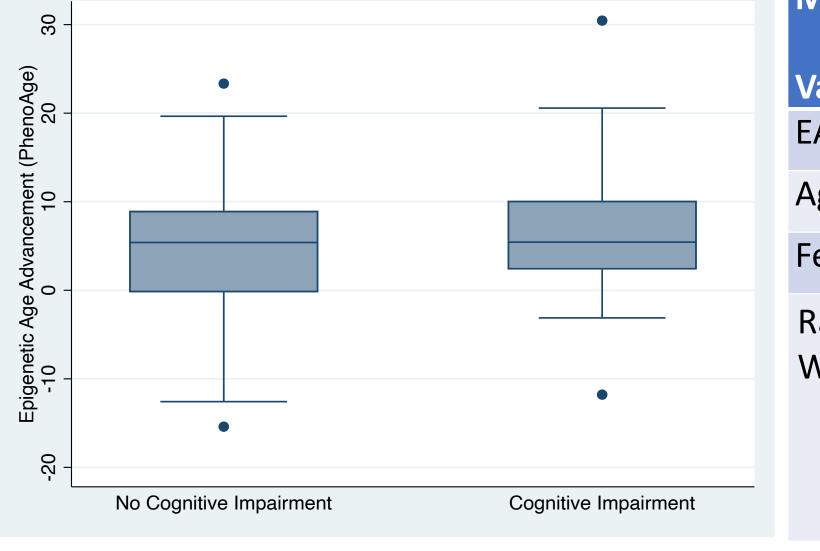
METHODS

Recruitment:

• Older adults (55 years and older) with HIV were recruited from the outpatient HIV clinical practice at Weill Cornell using an agestratified random selection strategy.

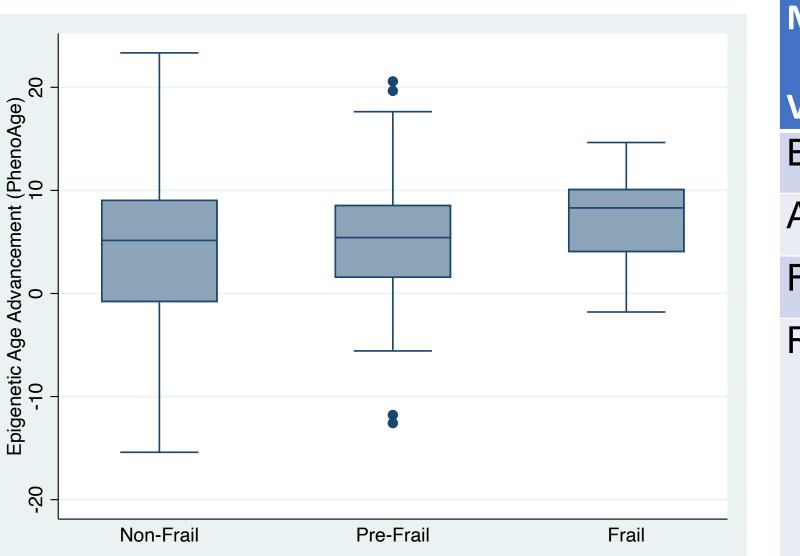
Procedures:

Analysis:


• Genome-wide DNA methylation was measured from dried blood spots using the Illumina MethylationEPIC platform and analyzed

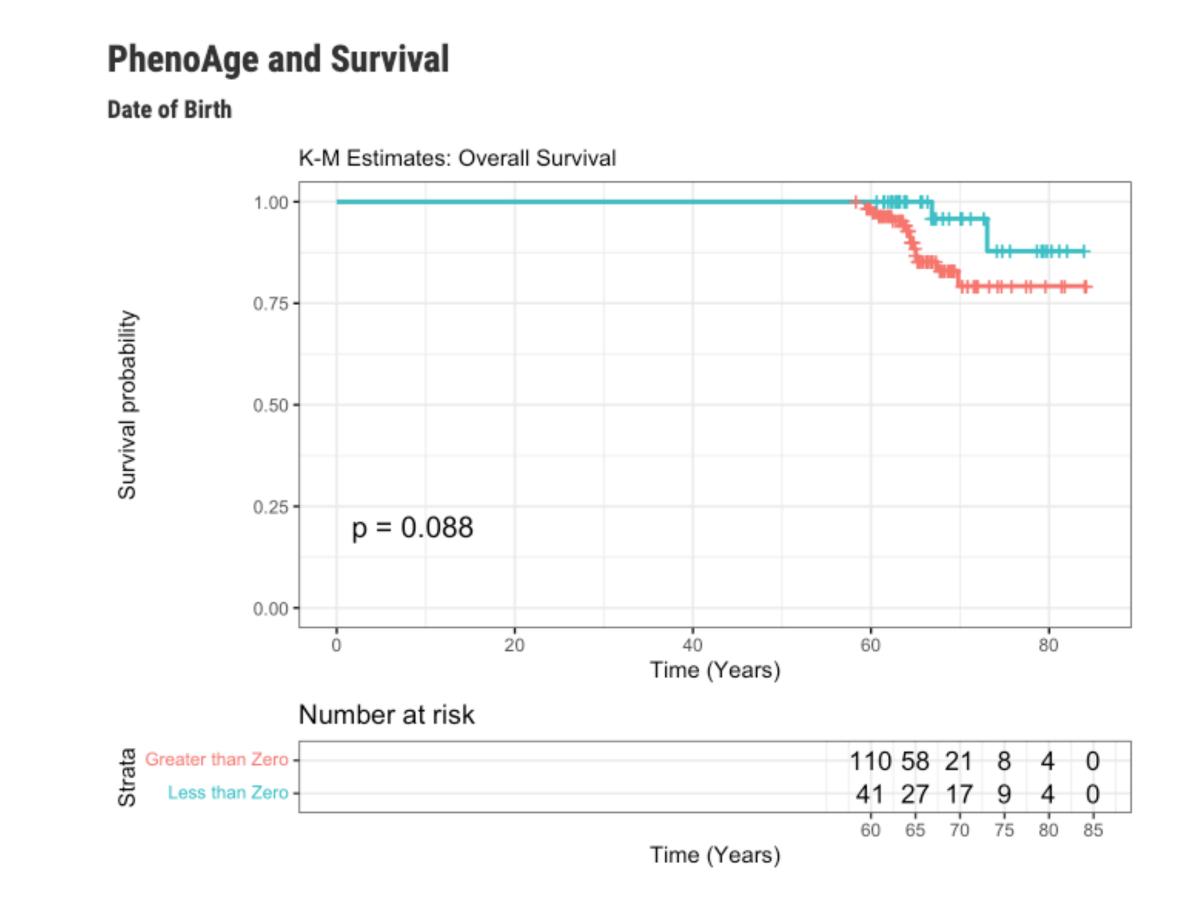
using 6 established epigenetic age algorithms including DNAm						
Characteristic (N=158)	N(%), Median (IQR)					
Age (years)	60 (56-64)					
Female sex	52 (33%)					
CD4 T-cell Count (cells/ml)	588 (323-811)					
Montreal Cognitive Assessment (MoCA)	24 (21-27)					
PhenoAge (years)	66 (62-71)					
Epigenetic Age Advancement ^γ	5.4 (SD 6.6)					
eFRS Frailty Score	0.09 (0.06-0.12)					
Fried Frailty Category ⁶						
- Nonfrail	49 (33%)					
- Prefrail	84 (56%)					
- Frail	16 (11%)					

Epigenetic age advancement was common in older PWH, and greater epigenetic advancement was associated with cognitive dysfunction, more advanced frailty state, and mortality over the course of 7 years.


RESULTS

Epigenetic Age Advancement Related to Cognitive Dysfunction (MoCA <23)

	iviuitivariable Linear Regression iviodel: Cognitive Dysfunction as Outcome					
	Variable.	Beta Coefficient	95% CI	P-Value		
	EAA (years)	-0.12	(-0.21, -0.04)	<0.01		
	Age (years)	-0.11	(-0.02, -0.01)	0.03		
	Female Sex	-0.29	(-1.47, 0.90)	0.63		
	Race White (ref)					
	Black	-1.57	(-2.86, -0.28)	0.02		
	Other	-2.50	(-4.03, -1.00)	<0.01		


Epigenetic Age Advancement Related to Frailty Status

Multivariable Ordinal Logistic Regression Model: Frailty State as Outcome							
Variable	Beta Coefficient	95% CI	P-Value				
EAA (years)	1.05	(1.00, 1.12)	0.07				
Age (years)	1.11	(1.05, 1.19)	< 0.01				
Female Sex	1.09	(0.51, 2.32)	0.83				
Race White (ref) Black Other	1.20 2.11	(0.55,2.62) (0.79, 5.59)	0.65 0.13				

Results:

PhenoAge Advancement Associated with Decreased Survival

Cox Proportional Hazards Regression - Adjusted for Age

Characteristic	HR^{1}	95% CI ¹	p-value
Difference between PhenoAge Epigenetic Age and Current Age	1.10	1.02, 1.18	0.011
Age (years)	0.79	0.65, 0.95	0.013
¹ HR = Hazard Ratio, CI = Confidence Interval			

CONCLUSIONS

In this study of older adults with HIV, the average epigenetic age advancement (EAA) was 5.4 years, as calculated by PhenoAge.

- EAA was associated with lower MoCA score in a linear regression model adjusted for age, sex and race (p<0.01).
- There was trend towards EAA association with more advanced frailty state adjusted for age, sex and race (p=0.07).
- EAA was associated with greater mortality after adjusting for chronologic age in a Cox Proportional hazards model (p=0.02).

These results suggest epigenetic clocks are a valuable biomarker of aging-related pathologies including cognitive dysfunction, frailty and mortality in older PWH and warrant further study.

ADDITIONAL KEY INFORMATION Author Contact: Carrie Johnston, MD, MS cmd9008@med.cornell.edu ACKNOWLEDGEMENTS Study Participants, Weill Cornell CTSC, Biostatistics Core FUNDING National Institute of Aging (K23 AG 072960), National Center For Advancing Translational Sciences (UL1TR000457), National Institute of Mental Health (R21 MH115821) REFERENCES

1. Horvath, S. and Levine, A.J., 2015. JID, 212(10).1563-1573.

2. Schoepf IC et all. 2023. Lancet Healthy Longev. Ay 4(5)211-218