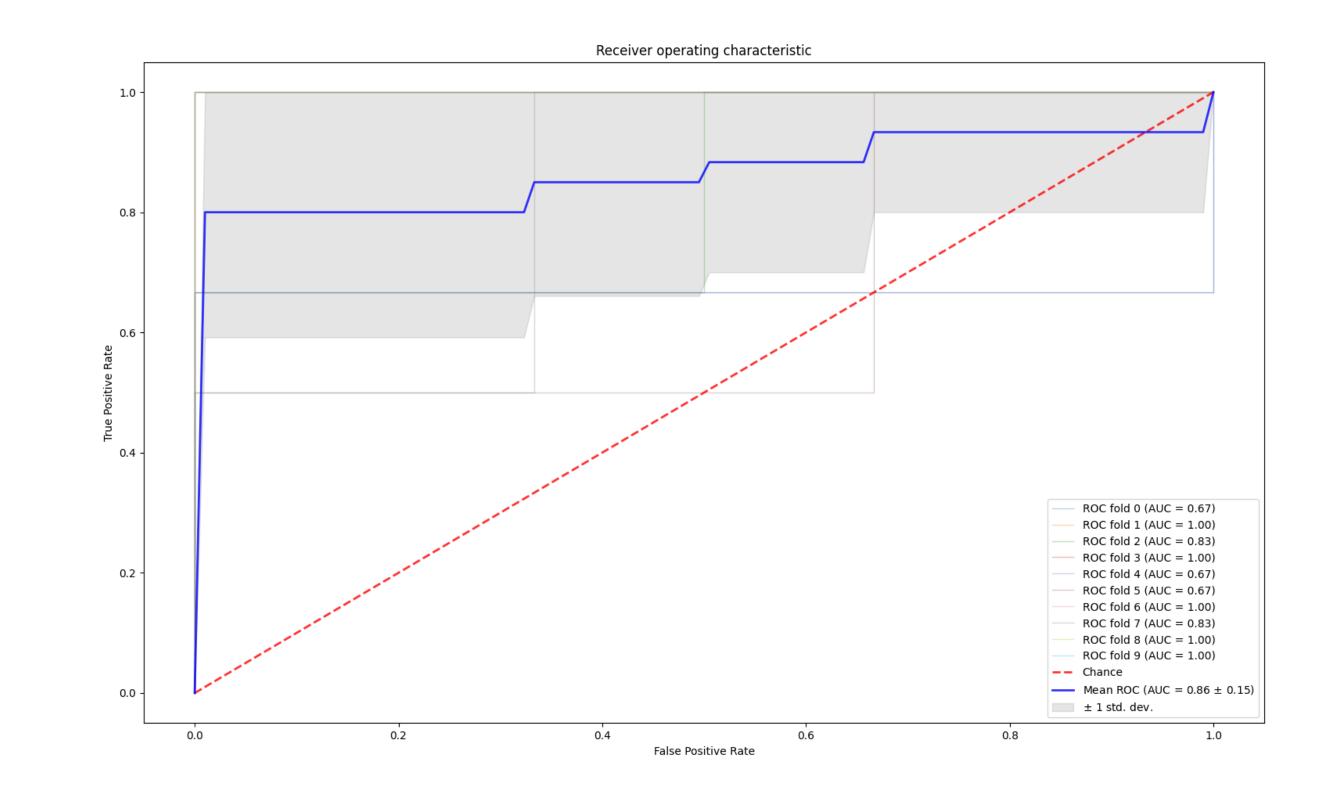


Plasma Extracellular Vesicles and Cell-Free Mitochondrial DNA are Associated with Cognitive Dysfunction in Treated Older Adults with HIV

Carrie D. Johnston, MD, MS¹, Erika Marques de Menezes, PhD², Scott Bowler, MS¹, Eugenia L. Siegler, MD¹, Courtney Friday BS¹, Philip J. Norris MD², Michelle C. Rice BS¹, Mary E. Choi MD¹, Marshall J. Glesby MD, PhD¹, Lishomwa C. Ndhlovu MD, PhD¹ ¹Weill Cornell Medicine, New York, NY, USA ²Vitalant Research Institute, San Francisco, CA, USA

BACKGROUND

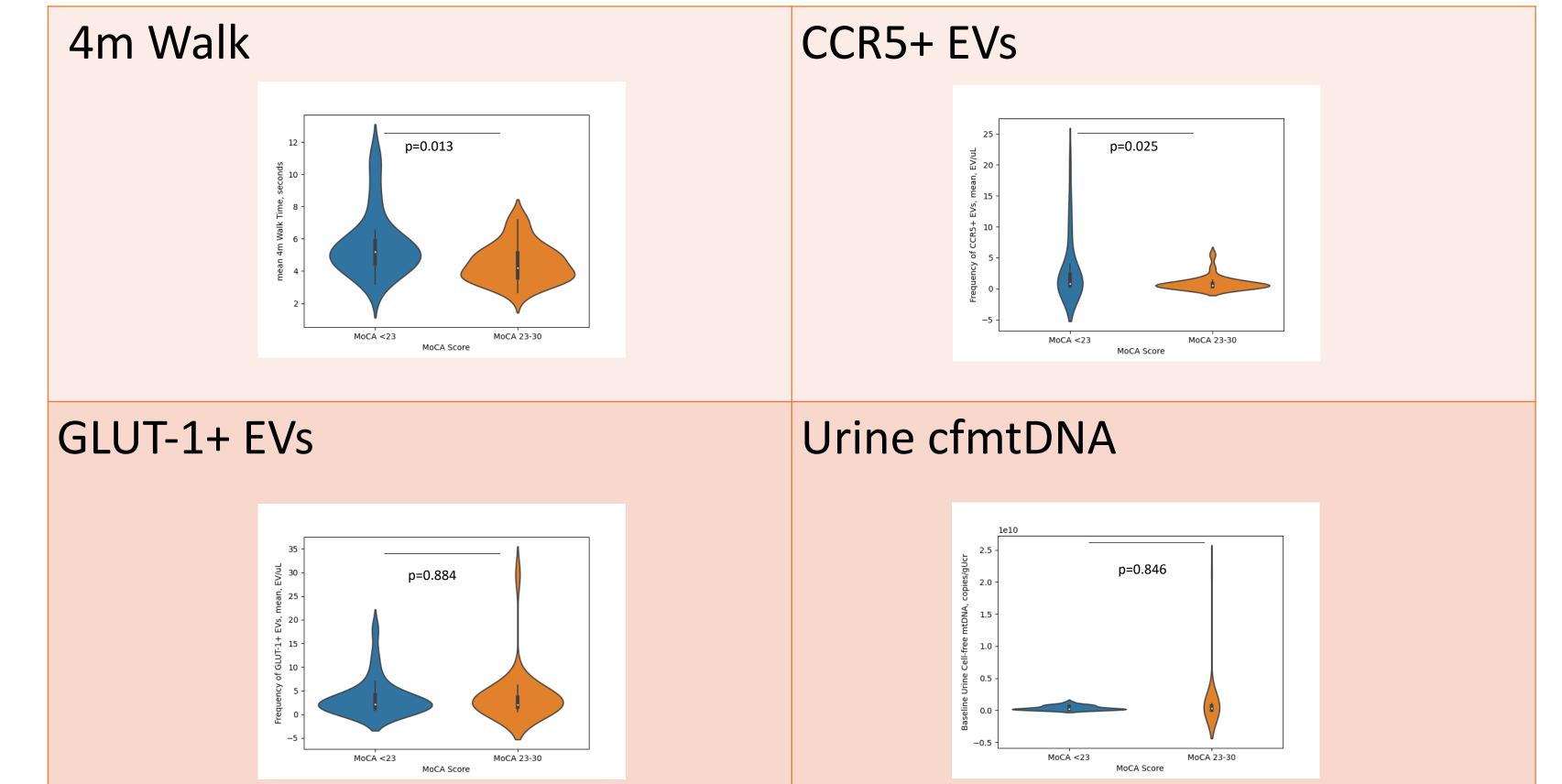

Extracellular vesicles (EVs) are small structures with a range of functions including cell-to-cell communication and inflammation.

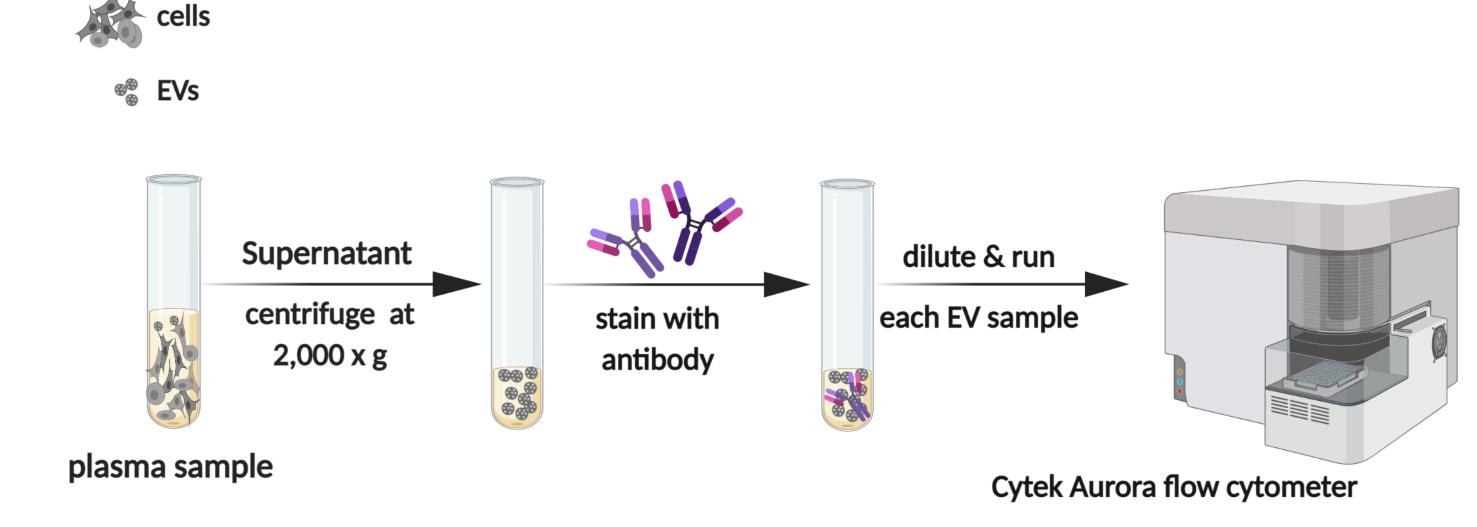
- Neurons and microglia can secrete EVs that cross the blood brain barrier.¹
- Plasma cell-free mitochondrial DNA (cfmtDNA) has been associated with cognitive dysfunction in older adults with HIV (OAH).²
- Specific EVs have been associated with inflammation in the setting of HIV, and some EVs carry HIV genetic material.³
- EVs can provide diagnostic and predictive value for CNS injury in HIV; EVs from the CSF have been shown to serve as such biomarkers however it remains unclear the role of EVs in OAH.⁴

We hypothesized that plasma EVs would be associated with cognitive dysfunction in OAH.

RESULTS:

Recursive feature elimination identified 4-meter walk time, CCR5+ EVs, GLUT-1+ EVS, and urine cfmtDNA as predictive of cognitive dysfunction in older adults with HIV




METHODS

- A nested case-control study compared OAH age ≥55 with cognitive dysfunction (Montreal Cognitive Assessment [MoCA] score <23) to demographically similar OAH controls (MoCA) >26).
- Frailty testing was conducted using the Fried Frailty Index. Participants with HIV viral load >40 copies/ml were excluded.
- Plasma and urine cfmtDNA measured by PCR for NADH dehydrogenase 1
- Plasma EVs were isolated by centrifugation \rightarrow Flow cytometry designed method to phenotype EVs.⁵

Experimental WorkFlow

Receiver operating characteristic curve illustrating the probability of discriminating cognitive function using 4meter walk time, CCR5+ and GLUT-1+ EVS, and urine cfmtDNA

Dye	Panel 1	Panel 2
PE	CD4 (T cell MHC II co-R)	CCR5 (Trafficking)
APC	CD14 (Mono LPS R)	CD62p (P-selectin)
PerCP-Cy5.5	CD16 (Mono FcR, NK cells)	CD41a (Platelet GPIIb)
PE-Cy7	CD19 (B cells)	CD163 (Mono/Mac Hgb R)
BV421	CX3CR1 (Fractalkine R)	CCR2 (Trafficking)
FITC	WGA (Sialic acid)	MAL-1 (Maackia amurensis lectin 1)

Dye	Panel 3	Panel 4	Panel 5
FITC	MAP2 (Neurons)	CD9 (Exosomes tetraspanin)	CD68 (Mono/Mac lectin R)
BV421	GFAP (Astrocytes)	MHC-Class 2 (Antigen presentation, microglial)	CD73 (B and T cell subset)
PerCP-Cy5.5	CD200 (Microglia cells)	CD63 (Exosomes tetraspanin)	CD66b (Neutrophils, granulocytes)
PE	S100B (Astrocytes)	GLUT-1 (Glucose transport 1)	CD36 (oxLDL R)
APC	NFL (Neurons)		
PE-Cy7	CD11b (Granulocytes, mac)		

STATISTICAL METHODS

A support vector machine learning-based model using recursive feature elimination and 10-fold cross validation was employed and area under the curve of the receiver operating characteristic (AUC-ROC) assessed the probability of discriminating cognitive function.

RESULTS: PARTICIPANT DEMOGRAPHICS

Cognitively Non-Cognitively

CONCLUSIONS

- Our machine learning model predicted cognitive dysfunction with 86% certainty (± 15%) using a combination of 4-meter walk time, CCR5+ and GLUT-1+ EVS, and urine cfmtDNA which may reflect inflammatory and metabolic activity in the central nervous system.
- These findings suggest a role of EVs and cfmtDNA as potential biomarkers of cognitive dysfunction and warrant further investigation.

4-meter walk time, CCR5+ EVs, GLUT-1+ EVs and Urine cfmtDNA predicted cognitive dysfunction in older adults with HIV with 86% (± 15%) certainty in a machine learning model

	Total (n=50)	Impaired (n=25)	Impaired (n=25)	p-value
Age, years, median [IQR]	60.0 [57.0, 64.8]	61.0 [57.0 <i>,</i> 66.0]	58.0 [57.0 <i>,</i> 63.0]	0.263
Sex, Male, n (%)	31 (62.0%)	15 (60.0%)	16 (64.0%)	1
HIV Duration, years, median [IQR]	24.0 [21.3, 27.8]	23.0 [22.0, 27.0]	24.0 [20.0, 29.0]	0.861
CD4 T cell count, median [IQR]	596 [479 <i>,</i> 859]	593 [498, 750]	703 [476, 962]	0.541
Plasma cell-free mitochondrial DNA, Copies/μL, geometric mean [IQR]	5.51 [5.08, 5.89]	5.75 [5.32, 6.30]	5.28 [4.92 <i>,</i> 5.77]	0.051
Urine cell-free mitochondrial DNA, Copies/g of urine creatinine, geometric mean [IQR]	19.34 [18.34, 20.25]	19.29 [18.59, 20.16]	19.40 [18.11 <i>,</i> 20.27]	0.846
Frailty, n (%)				0.132
Not Frail	17 (35.1%)	6 (24.0%)	11 (47.8%)*	
Pre-Frail/Frail	31 (64.6%)	19 (76.0%)	12 (52.2%)*	
4m Walk Time, seconds, median [IQR]	4.84 [3.90, 5.63]	5.21 [4.44, 5.87]	4.21 [3.58, 5.13]	0.013
* N=23. Continuous variables compare	d by Mann-Whitn	ey U test		

ADDITIONAL INFORMATION

Author Contact: Carrie Johnston, MD, MS <u>cmd9008@med.cornell.edu</u>

FUNDING

- National Institute of Aging (K23 AG 072960)
- National Center For Advancing Translational Sciences (UL1TR000457)
- National Institute of Mental Health (R21 MH115821)
- National Institute of Neurological Disorders and Stroke (R01 NS117458)
- National Institute on Aging (T32 AG049666)

REFERENCES

1. Chauvin, M. and D. Sauce (2022). "Mechanisms of immune aging in HIV." <u>Clinical Science</u> **136**(1): 61-80. 2. Johnston, C. D., et al. (2022). "Plasma Cell-Free Mitochondrial DNA as a Marker of Geriatric Syndromes in Older Adults with HIV." JAIDS

3. Arakelyan, A., et al. (2017). "Extracellular vesicles carry HIV Env and facilitate HIV infection of human lymphoid tissue." <u>Scientific reports</u> **7** 1-9.

4. Guha, D., et al. (2019). "Cerebrospinal fluid extracellular vesicles and neurofilament light protein as biomarkers of central nervous system injury in HIV-infected patients on antiretroviral therapy." <u>AIDS</u> 33(4): 615.

5. Marques de Menezes, E. G., et al. (2022). "Plasma CD16+ Extracellular Vesicles Associate with Carotid Artery Intima-Media Thickness in HIV+ Adults on Combination Antiretroviral Therapy." Mbio: e03005-03021.